Microgrids and Distributed Hydrogen with SureSource Tri-generation Systems

October 2018
FuelCell at a Glance

Delivering Clean Innovative Solutions for the Global Supply, Recovery and Storage of Energy

Snapshot

<table>
<thead>
<tr>
<th>Design & Manufacture</th>
<th>Turnkey Project Development</th>
<th>Plant Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danbury, CT - Corporate, R&D</td>
<td>Torrington, CT - Manufacturing, Service</td>
<td>Taufkirchen, Germany – Manufacturing</td>
</tr>
<tr>
<td>Pohang, South Korea – Manufacturing Partner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Company Overview

- FuelCell Energy designs, manufactures, undertakes project development, installs, operates and maintains megawatt-scale fuel cell systems.
- Serving utilities, industrial and large municipal power users with solutions that include:
 - Both utility-scale and on-site power generation
 - Carbon capture
 - Local hydrogen production for transportation and industry
 - Long duration energy storage

Global Customers

© 2018 FuelCell Energy, Inc
SureSource Solutions

2.8 MW
SureSource3000™
47% Electrical Eff,
up to 90% Total Eff.

1.4 MW
SureSource1500™
47% Electrical Eff,
up to 90% Total Eff.

2.35 MW
SureSource
Hydrogen™
2.35 MW Power plus
1270 kg/day Hydrogen

3.7 MW
SureSource4000™
60% Electrical Eff.
Up to 80% total Eff

Larger Scale Fuel Cell Parks

59 MW
11 MW
15 MW

Individual fuel cell &
350 kW fuel cell stack

Completed module
1.4 megawatts

Four-Stack Module
1.4 megawatts

© 2018 FuelCell Energy, Inc
SureSource Hydrogen Process (Tri-generation)

- **H₂ Separation**: 1270 kg/day SAE J2719 quality hydrogen
- **Fuel Exhaust Cooling**: 1 gpm net water production
- **Air Electrodes**: Water recycled to humidify fuel
- **Fuel Electrodes**: Power conversion and system internal loads
- **System Exhaust**: with 0.5 MMBtu/h available thermal energy

Hydrogen is produced from methane in the SureSource fuel cell stack modules, using fuel cell product water and waste heat to support reforming.

© 2018 FuelCell Energy, Inc
Distributed Hydrogen Advantage

Natural gas as feedstock and thermal fuel
Water for steam reforming

Large Steam-Methane Reformer

Central Hydrogen and Long Distance Transport

Additional cost and emissions from transportation from central SMR to stations to filling stations

Fueling stations

On-site biogas or biomethane by pipeline is renewable power generation and hydrogen feedstock fuel

Clean / Renewable Power & Heat

Local distribution to stations

Onsite fueling station

On-Site and/or Local Distributed (<40 miles) Hydrogen using Trigeneration Fuel Cells

Efficient co-production of hydrogen with clean power and heat close to users

© 2018 FuelCell Energy, Inc
Distributed Hydrogen Trigeneration systems produce hydrogen with fuel cell waste heat, avoids methane combustion and avoid cost & emissions of long distance truck transport.

© 2018 FuelCell Energy, Inc
SureSource 1500 and 3000 power plants have achieved CARB DG Certification on Anaerobic Digester Gas under the California Distributed Generation Program 2013 Waste Gas Standards
Distributed Hydrogen Overview

Co-production of power with hydrogen improves economics to produce the most affordable hydrogen and generate state LCFS credits & potentially federal RINS

SureSource Hydrogen System

Renewable Feedstock:
On-site Biogas: 912 MCFD
Biomethane by pipeline: 540 MCFD (4263 GGE/day)

Backup fuel: natural gas

Transportation Energy Center

2.3 MW Clean and green power – 18 GWh/year
• 8,500 tons per year avoided grid CO₂ emissions with biogas fuel in California
• 1800 tons per year avoided grid CO₂ emissions with natural gas fuel in California
• 2 tons per year avoided NOX

1270 kg/day hydrogen
• 6200 tons per year CO₂ reduction from vehicles
• 8.9 tons per year NOX reduction from vehicles

0.5 MMBtu/h thermal energy
• 290 tons per year avoided boiler CO₂ emissions
• 0.1 tons per year avoided NOX

© 2018 FuelCell Energy, Inc
Toyota to Build the World’s First Megawatt-scale 100% Renewable Power and Hydrogen Generation Station

Tri-Gen will generate on-site hydrogen to supply Toyota Fuel Cell Vehicles, including Project Portal Heavy-Duty Truck Concept

Toyota Logistics Services at the Long Beach Port will become first Toyota facility in North America to use 100% Renewable Power
Fuel Cell Microgrids

Fuel cells only:
Fuel cells can be the sole energy source for a micro-grid

Turnkey solution includes: designing and modeling the micro-grid & building, operating and maintaining the fuel cell power plant

“A fuel cell powered by directed biogas is the cornerstone of the micro-grid operation.”

Combined with other power generation systems:
Fuel cell micro-grids can operate in tandem with other on-site power generation technologies

Fuel cells provide dependable, clean energy for microgrids, either alone or in parallel with other generation sources

- **Grid Connected mode**
 In normal operation the fuel cell synchronizes to local utility grid and offsets part or all of the load demand of the facility, reducing power needed from the utility.

- **Micro-grid mode**
 After a grid outage, facility loads see a brief interruption, and are then reconnected in a controlled manner to the fuel cell and other on-site sources.

- **Critical Supply mode**
 Upon grid outage, disconnects from the grid and enters standby mode. Seamless backup power available to hard-wired customer critical loads up to 85% of fuel cell output.

Load Leveler operation profile
microgrid established in ~30 seconds
Project Overview
- 1.4 MW combined heat & power fuel cell power plant
- Supplies 80% of campus power needs
- Waste heat converted to hot water and supplied to three locations on campus
- Connecticut Microgrid Program Award

Benefits
- Cost savings during normal operations
- In a grid outage, power to critical facilities – shelter ~2700 persons, security, dining
- Renewable Energy Research Lab – “practice what we teach”
- Emissions reductions: 7,000 tons CO2, 64 tons SOx, 28 tons NOx
Fuel Cell - Only
- 1.4 MW Fuel Cell
- Load Follow Capable
- Black-Start Capable

Grid Connected Operation
- Base Load, Net Metering
- Heat to Campus

Microgrid Operation
- “Drop & Pickup”
- Microgrid controller sequences critical facilities.
- Inverter follows microgrid load.
- Load Leveler maintains fuel cell power constant.
Case Study – Town of Woodbridge, CT

Project Overview
• 2.2 MW combined heat & power fuel cell power plant
• Power to UI grid during normal operation
• Supplies 100% of Town microgrid power needs during grid outage
• Heat supplied to Amity High School
• Connecticut Microgrid Program Award

Benefits
• Helps UI achieve its Class I RPS goals
• In a grid outage, power to critical facilities – police, fire, community services
• Savings to Amity High School ~ $100K per year from avoided natural gas
• Enabled upgrade to local gas grid delivery infrastructure
Case Study – Town of Woodbridge, CT

Fuel Cell - Only
• 2.2 MW Fuel Cell
• Load Follow Capable
• Black-Start Capable

Grid Connected Operation
• Base Load
• Heat to High School

Microgrid Operation
• “Drop & Pickup”
• Microgrid controller sequences critical loads.
• Inverter follows microgrid load.
• Load Leveler maintains fuel cell power constant.
Supporting the Advancement of California’s ZEV Fueling Infrastructure

Transportation Energy Center
Microgrid with Grid Outage Operations

Landfill Gas

Organic/Dairy Waste

Anaerobic Digesters

FuelCell Energy Tri-Gen

Biomethane by pipeline

On-site biogas

Onsite Electricity

Excess Water

Hydrogen 1270 kg/day

Onsite Hydrogen Fueling Station

Off Site Excess Hydrogen Deliveries

© 2018 FuelCell Energy, Inc
Thank you

Paul Fukumoto
Director, Business Development
FuelCell Energy, Inc,
pfukumoto@fce.com
(949) 636-9746